INDUSTRIAL USER MONITORING

Joseph K. Fielding Manager, Regulatory Services and Compliance Trinity River Authority

LEARNING OBJECTIVES

- Describe purpose of monitoring conditions
- Discuss the considerations for establishing monitoring conditions
- Explain analytical methods requirements

FOLLOW ESTABLISHED PROTOCOLS

- Standard Operating Procedures (SOPs) are step-by-step instructions that act as guidelines for employees to follow through their work processes.
- The purpose of having SOPs is to produce a product that is consistent and predictable.
- Written SOPs may be numbered steps, formatted as flow charts, or videos.

MONITORING REQUIREMENTS

where?

MONITORING REQUIREMENTS

Pollutants to be monitored
Sampling location
Sample collection method
Monitoring frequency
Analytical methods

POLLUTANTS TO BE MONITORED

- Your SIU Permit should be your first source in determining this criteria.
 - Pollutant types, monitoring frequencies, and sample types.
- All sampling methods, holding times, and preservation techniques must be consistent with 40 CFR Part 136

POLLUTANTS TO BE MONITORED

- Include numerical limits
- Include all categorical pretreatment standards
- Include other parameters subject to local limits
- Include monitoring for unregulated pollutants of potential concern (if justified)
- Include flow monitoring where required

SAMPLING LOCATION

- Must coincide with the point(s) at which the effluent limits apply
- Must produce a sample "representative" of the nature and volume of the Industrial User's effluent
- Must be safe, convenient and accessible to Industrial User and Control Authority personnel

SAMPLING LOCATION

Finding your sampling location:

- GIS mapping systems
- Pictures
- Narrative descriptions
- Maps/Diagrams

SAMPLING LOCATION

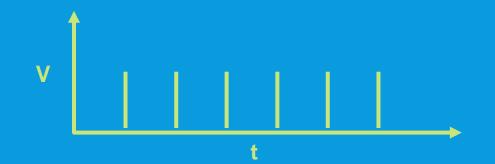
- Site Specific Safety:
 - Tall Grass
 - Poisonous Plants
 - Rocky Terrain
 - Muddy Areas
 - Traffic

- Sample Location Characteristics:
 - Chemical Fumes
 - Steam, hot sample (>120°F)
 - Foam
 - Discolored Sample

SAMPLE COLLECTION METHOD

Specify collection method

- Grab sample
- Composite sample (proportional to time or flow)
- Specify sampling period (e.g., 24-hour, 8-hour)
- Specify minimum number of aliquots
- Specify minimum number of grab samples


- <u>Grab Sample</u>: Taken from a wastestream on a one-time basis without consideration of the flow rate of the wastestream and without consideration of time
 - Must be used to monitor certain parameters (e.g., pH, oil & grease, dissolved oxygen, volatile organics, cyanide)
 - On a case-by-case basis may be used for monitoring batch discharges

- <u>Composite Sample</u>: Composed of four or more discrete aliquots. The aggregate sample will reflect the average water quality over the sample period.
 - More representative measure of the discharge of pollutants over a given period of time
 - Accounts for variability in pollutant concentration and discharge flow rate

- Composite sample is defined by the time interval (t) between aliquots, and the volume of each aliquot (V)
 - <u>Time Proportional</u> (t_c, V_c): Interval time and sample volume are constant

- <u>Flow Proportional</u>: Interval time or sample volume may vary
 - Constant volume (t_v, V_c)

V

• Constant time (t_c , V_v)

- <u>Continuous Sample</u>: Automated collection and analysis of a parameter in a discharge
 - Typically used for pH, temperature, DO and flow

MONITORING FREQUENCIES

- Federal Regulations require a minimum of "twice" per year
 - Once by IU and once by Control Authority
- Develop compliance monitoring requirement based on at least the following factors:
 - Representative data of users discharge
 - Potential impact of industry
 - History of user compliance
 - Costs

ANALYTICAL METHODS

- •Analytical methods must comply with 40 CFR Part 136 regulations
- May specify exact analytical method required
- •May require analysis be performed by a State certified laboratory
- Alternative methods

ANALYTICAL DETECTION LEVEL CONSIDERATIONS

- Occasionally, the value of a calculated local limit falls below method detection limit (MDL) and minimum level (ML) of approved analytical methods
 - <u>Method detection limit</u>: the minimum concentration of an analyte (substance) that can be measured and reported with a 99% confidence that the analyte concentration is distinguishable from the method blank results

ANALYTICAL DETECTION LEVEL CONSIDERATIONS

- <u>Minimum level</u>: the sample concentration equivalent to the lowest calibration point in a method or a multiple of the method detection limit (MDL), whichever is higher. May be published with method; based on lowest calibration used by lab. Or may be calculated by multiplying MDL by factor of 3
- Most commonly occurs with water quality-based limits

RESOURCES

• 40 CFR Parts 136 and 403

- <u>https://www.ecfr.gov/current/title-40/chapter-I/subchapter-D/part-136?toc=1</u>
- <u>https://www.ecfr.gov/current/title-40/chapter-I/subchapter-N/part-403?toc=1</u>
- Industrial User Permitting Guidance Manual
 - <u>https://www.epa.gov/npdes/industrial-user-permitting-guidance-manual</u>
- Industrial User Inspection and Sampling Manual For POTWs
 - <u>https://www.epa.gov/compliance/industrial-user-inspection-and-sampling-manual-publicly-owned-treatment-works</u>

QUESTIONS

Joseph K. Fielding Manager, Regulatory Services and Compliance **Trinity River Authority of Texas** (214) 499-8930 fieldingjk@trinityra.org